| v

ERLANG

crypto

Copyright © 1999-2013 Ericsson AB. All Rights Reserved.
crypto 2.3

February 25, 2013

Copyright © 1999-2013 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 25, 2013

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

~
*

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

X X X X X X X X X X X X X X ¥ X X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ *x

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " “AS IS'' AND ANY

2 | Ericsson AB. All Rights Reserved.: crypto

1.1 Licenses

EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

¥ X X X X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

1.1.2 SSlLeay License

~
*

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

¥ X X X X X X X X X X X X X X ¥ X X ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

Ericsson AB. All Rights Reserved.: crypto | 3

1.1 Licenses

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. 1i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

¥ X X X X X X ¥ ¥ ¥ ¥ ¥ ¥ *

*
~

4 | Ericsson AB. All Rights Reserved.: crypto

1.1 Licenses

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

Ericsson AB. All Rights Reserved.: crypto | 5

crypto

crypto

Application

The purpose of the Crypto application is to provide message digest and DES encryption for SMNPv3. It provides
computation of message digests MD5 and SHA, and CBC-DES encryption and decryption.

Configuration

The following environment configuration parameters are defined for the Crypto application. Refer to application(3)
for more information about configuration parameters.

debug = true | fal se <optional >

Causes debug information to be written to standard error or standard output. Default isf al se.

OpenSSL libraries

The current implementation of the Erlang Crypto application is based on the OpenSSL. package version 0.9.8 or higher.
There are source and binary releases on the web.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

The same URL aso contains links to some compiled binaries and libraries of OpenSSL (see the Rel at ed/
Bi nar i es menu) of whichthe Shining Light ProductionsWin32 and OpenSSL pagesare of interest for the Win32
user.

For some Unix flavours there are binary packages available on the net.
If you cannot find a suitable binary OpenSSL package, you have to fetch an OpenSSL source release and compileit.
Y ou then have to compile and install thelibrary | i bcr ypt 0. so (Unix), or thelibrary | i beay32. dl | (Win32).

For Unix Thecr ypt o_dr v dynamic driver isdelivered linked to OpenSSL librariesin/ usr /| ocal / | i b, but the
default dynamic linking will also accept librariesin/ | i band/ usr/ i b.

If that is not applicable to the particular Unix operating system used, the example Makef i | e in the Crypto pri v/
obj directory, should be used as a basis for relinking the final version of the port program.

For W n32 it is only required that the library can be found from the PATH environment variable, or that they reside
in the appropriate SYSTEMB2 directory; hence no particular relinking is need. Hence no example Makefi | e for
Win32 is provided.

SEE ALSO
application(3)

6 | Ericsson AB. All Rights Reserved.: crypto

href
href

crypto

crypto

Erlang module

This module provides a set of cryptographic functions.

References:

* md4: The MD4 Message Digest Algorithm (RFC 1320)

« md5: The MD5 Message Digest Algorithm (RFC 1321)

e sha Secure Hash Standard (FIPS 180-2)

« hmac: Keyed-Hashing for Message Authentication (RFC 2104)

e des: Data Encryption Standard (FIPS 46-3)

e aes. Advanced Encryption Standard (AES) (FIPS 197)

e ech, cbc, cfb, ofb, ctr: Recommendation for Block Cipher Modes of Operation (NIST SP 800-38A).
* rsa: Recommendation for Block Cipher Modes of Operation (NIST 800-38A)
e dss: Digital Signature Standard (FIPS 186-2)

The above publications can be found at NI ST publications, at IETF.

Types

byte() = 0 ... 255

ioelem() = byte() | binary() | iolist()
iolist() = [ioelem()]

Mpint() = <<Bytelen:32/integer-big, Bytes:BytelLen/binary>>

Exports

start() -> ok
Starts the crypto server.

stop() -> ok
Stops the crypto server.

info() -> [atom()]
Provides the available crypto functionsin terms of alist of atoms.

info lib() -> [{Name,VerNum,VerStr}]
Types.

Name = binary()

Ver Num = i nteger ()

Ver Str = binary()

Provides the name and version of the libraries used by crypto.

Ericsson AB. All Rights Reserved.: crypto | 7

href
href

crypto

Nane isthe name of the library. Ver Numis the numeric version according to the library's own versioning scheme.
Ver St r contains atext variant of the version.

> info_lib().
[{<<"OpenSSL">>,9469983,<<"0penSSL 0.9.8a 11 Oct 2005">>}]

Note:

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
openssl v. h) used when crypto was compiled. Thetext variant representsthe OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

md4(Data) -> Digest
Types:
Data = iolist() | binary()
Di gest = binary()
Computes an MD4 message digest from Dat a, where the length of the digest is 128 bits (16 bytes).

md4 init() -> Context
Types:
Context = binary()
Creates an MD4 context, to be used in subsequent callsto md4_updat e/ 2.

md4 update(Context, Data) -> NewContext
Types:

Data = iolist() | binary()

Cont ext = NewContext = binary()

Updates an MD4 Cont ext with Dat a, and returns a NewCont ext .

md4 final(Context) -> Digest
Types:
Cont ext = Digest = binary()
Finishes the update of an MD4 Cont ext and returns the computed MD4 message digest.

md5(Data) -> Digest
Types:
Data = iolist() | binary()
Di gest = binary()
Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes).

8 | Ericsson AB. All Rights Reserved.: crypto

crypto

md5 init() -> Context
Types:
Context = binary()
Creates an M D5 context, to be used in subsequent callsto nd5_updat e/ 2.

md5 update(Context, Data) -> NewContext
Types:

Data = iolist() | binary()

Cont ext = NewContext = binary()

Updates an MD5 Cont ext with Dat a, and returns a NewCont ext .

md5 final(Context) -> Digest
Types:
Context = Digest = binary()
Finishes the update of an MD5 Cont ext and returns the computed VD5 message digest.

sha(Data) -> Digest
Types:
Data = iolist() | binary()
Di gest = binary()
Computes an SHA message digest from Dat a, where the length of the digest is 160 bits (20 bytes).

sha init() -> Context
Types:
Cont ext = binary()
Creates an SHA context, to be used in subsequent callsto sha_updat e/ 2.

sha update(Context, Data) -> NewContext
Types.

Data = iolist() | binary()

Cont ext = NewContext = binary()

Updates an SHA Cont ext with Dat a, and returns a NewCont ext .

sha final(Context) -> Digest
Types:
Context = Digest = binary()
Finishes the update of an SHA Cont ext and returns the computed SHA message digest.

hash(Type, Data) -> Digest

Types.
Type = nmd4 | md5 | ripendl60 | sha | sha224 | sha256 | sha384 | shab512
Data = iodata()

Di gest = binary()

Ericsson AB. All Rights Reserved.: crypto | 9

crypto

Computes a message digest of type Type from Dat a.
May throw exception not sup in case the chosen Ty pe is not supported by the underlying OpenSSL implementation.

hash init(Type) -> Context
Types.
Type = md4 | md5 | ripendl60 | sha | sha224 | sha256 | sha384 | sha512

Initializesthe context for streaming hash operations. Ty pe determineswhich digest to use. Thereturned context should
be used as argument to hash_update.

May throw exception not sup in case the chosen Ty pe is not supported by the underlying OpenSSL implementation.

hash update(Context, Data) -> NewContext
Types:
Data = iodata()
Updates the digest represented by Cont ext using the given Dat a. Cont ext must have been generated using

hash_init or a previous call to this function. Dat a can be any length. NewCont ext must be passed into the next
call tohash_updat e or hash_final.

hash final(Context) -> Digest
Types.
Di gest = binary()

Finalizes the hash operation referenced by Cont ext returned from a previous call to hash_update. The size of
Di gest isdetermined by the type of hash function used to generateit.

md5 mac(Key, Data) -> Mac

Types:
Key = Data = iolist() | binary()
Mac = binary()

Computes an MD5 MAC message authentification code from Key and Dat a, where the the length of the Mac is 128
bits (16 bytes).

md5 mac_96(Key, Data) -> Mac

Types:
Key = Data = iolist() | binary()
Mac = binary()

Computes an MD5 MAC message authentification code from Key and Dat a, where the length of the Mac is 96 bits
(12 bytes).

hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MacLength) -> Mac
Types:
Type = md5 | sha | sha224 | sha256 | sha384 | sha512
Key = iodata()
Data = iodata()
MacLength = integer()

10 | Ericsson AB. All Rights Reserved.: crypto

crypto

Mac = binary()
ComputesaHMAC of type Ty pe from Dat a using Key as the authentication key.
MacLengt h will limit the size of the resultant Mac.

hmac_init(Type, Key) -> Context

Types:
Type = md5 | ripend160 | sha | sha224 | sha256 | sha384 | sha512
Key = iolist() | binary()
Context = binary()

Initializes the context for streaming HMAC operations. Ty pe determines which hash function to use in the HMAC
operation. Key isthe authentication key. The key can be any length.

hmac_update(Context, Data) -> NewContext
Types:
Cont ext = NewContext = binary()
Data = iolist() | binary()
Updates the HMAC represented by Cont ext using the given Dat a. Cont ext must have been generated using an

HMAC init function (such as hmac init). Dat a can be any length. NewCont ext must be passed into the next call
tohmac_updat e.

hmac final(Context) -> Mac
Types.
Context = Mac = binary()

Finalizes the HMAC operation referenced by Cont ext . The size of the resultant MAC is determined by the type of
hash function used to generateit.

hmac_final n(Context, HashLen) -> Mac

Types:
Context = Mac = binary()
HashLen = non_neg_i nteger ()

Finalizes the HMAC operation referenced by Cont ext . HashLen must be greater than zero. Mac will be abinary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

sha mac(Key, Data) -> Mac
sha mac(Key, Data, MacLength) -> Mac

Types:
Key = Data = iolist() | binary()
Mac = binary()

MacLenength = integer() =< 20

Computes an SHA MAC message authentification code from Key and Dat a, where the default length of the Mac is
160 bits (20 bytes).

Ericsson AB. All Rights Reserved.: crypto | 11

crypto

sha mac 96(Key, Data) -> Mac

Types:
Key = Data = iolist() | binary()
Mac = binary()

Computes an SHA MAC message authentification code from Key and Dat a, where the length of the Mac is 96 bits
(12 bytes).

des cbc encrypt(Key, IVec, Text) -> Cipher
Types.

Key = Text = iolist() | binary()

| Vec = Cipher = binary()

Encrypts Text according to DESin CBC mode. Text must be amultiple of 64 bits (8 bytes). Key isthe DES key,
and | Vec isan arbitrary initializing vector. The lengths of Key and | Vec must be 64 bits (8 bytes).

des cbc decrypt(Key, IVec, Cipher) -> Text
Types:
Key = Cipher = iolist() | binary()
| Vec = Text = binary()
Decrypts G pher according to DESin CBC mode. Key isthe DESkey, and | Vec isan arbitrary initializing vector.

Key and | Vec must have the same values as those used when encrypting. G pher must be a multiple of 64 bits (8
bytes). The lengths of Key and | Vec must be 64 bits (8 bytes).

des cbc ivec(Data) -> IVec

Types.
Data = iolist() | binary()
| Vec = binary()

Returnsthe | Vec to be used in anext iteration of des_cbc_[encrypt | decrypt] . Dat a isthe encrypted data
from the previous iteration step.

des cfb encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

| Vec = Ci pher = binary()

Encrypts Text according to DESin 8-bit CFB mode. Key isthe DESkey, and| Vec isan arbitrary initializing vector.
The lengths of Key and | Vec must be 64 bits (8 bytes).

des cfb decrypt(Key, IVec, Cipher) -> Text
Types:
Key = Cpher = iolist() | binary()
| Vec = Text = binary()
Decrypts Ci pher according to DES in 8-bit CFB mode. Key is the DES key, and | Vec is an arbitrary initializing

vector. Key and | Vec must have the same values as those used when encrypting. The lengths of Key and | Vec
must be 64 bits (8 bytes).

12 | Ericsson AB. All Rights Reserved.: crypto

crypto

des cfb ivec(IVec, Data) -> NextIVec

Types:
IVec = iolist() | binary()
Data = iolist() | binary()

Next | Vec = binary()

Returns the | Vec to be used in a next iteration of des_cf b_[encrypt | decrypt] .| Vec isthe vector used in
the previous iteration step. Dat a isthe encrypted data from the previous iteration step.

des3 cbc_encrypt(Keyl, Key2, Key3, IVec, Text) -> Cipher
Types:
Keyl =Key2 = Key3 Text = iolist() | binary()
| Vec = Cipher = binary()
Encrypts Text according to DES3in CBC mode. Text must be amultiple of 64 bits (8 bytes). Key 1, Key2, Key 3,

arethe DES keys, and | Vec isan arbitrary initializing vector. The lengths of each of Key 1, Key2, Key3 and | Vec
must be 64 bits (8 bytes).

des3 cbc decrypt(Keyl, Key2, Key3, IVec, Cipher) -> Text

Types:
Keyl = Key2 = Key3 = Cipher = iolist() | binary()
I Vec = Text = binary()

Decrypts Ci pher according to DES3 in CBC mode. Key 1, Key2, Key3 arethe DESkey, and | Vec isan arbitrary
initializing vector. Key1, Key2, Key3 and | Vec must and | Vec must have the same values as those used when
encrypting. Ci pher must be a multiple of 64 bits (8 bytes). The lengths of Key1, Key2, Key3, and | Vec must
be 64 bits (8 bytes).

des3 cfb encrypt(Keyl, Key2, Key3, IVec, Text) -> Cipher
Types:
Keyl =Key2 = Key3 Text = iolist() | binary()
| Vec = Cipher = binary()
Encrypts Text according to DES3 in 8-bit CFB mode. Key1, Key?2, Key3, are the DES keys, and | Vec is an
arbitrary initializing vector. The lengths of each of Key 1, Key2, Key3 and | Vec must be 64 bits (8 bytes).

May throw exception not sup for old OpenSSL versions (0.9.7) that does not support this encryption mode.

des3 cfb decrypt(Keyl, Key2, Key3, IVec, Cipher) -> Text
Types:
Keyl = Key2 = Key3 = Cipher = iolist() | binary()
I Vec = Text = binary()
Decrypts G pher according to DES3 in 8-bit CFB mode. Key1, Key2, Key3 are the DES key, and | Vec is an

arbitrary initializing vector. Key 1, Key2, Key3 and | Vec must and | Vec must have the same values as those used
when encrypting. The lengths of Key 1, Key 2, Key3, and | Vec must be 64 bits (8 bytes).

May throw exception not sup for old OpenSSL versions (0.9.7) that does not support this encryption mode.

des ecb encrypt(Key, Text) -> Cipher
Types:

Ericsson AB. All Rights Reserved.: crypto | 13

crypto

Key = Text = iolist() | binary()
Ci pher = binary()

Encrypts Text according to DES in ECB mode. Key is the DES key. The lengths of Key and Text must be 64
bits (8 bytes).

des ecb decrypt(Key, Cipher) -> Text
Types:
Key = Cipher = iolist() | binary()
Text = binary()

Decrypts Ci pher according to DES in ECB mode. Key isthe DES key. The lengths of Key and Ci pher must be
64 bits (8 bytes).

blowfish ecb encrypt(Key, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

Ci pher = binary()

Encrypts the first 64 bits of Text using Blowfishin ECB mode. Key isthe Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

blowfish ecb decrypt(Key, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

G pher = binary()

Decryptsthefirst 64 bits of Text using Blowfish in ECB mode. Key isthe Blowfish key. The length of Text must
be at least 64 bits (8 bytes).

blowfish cbc encrypt(Key, IVec, Text) -> Cipher
Types.

Key = Text = iolist() | binary()

| Vec = Ci pher = binary()

Encrypts Text using Blowfish in CBC mode. Key isthe Blowfish key, and | Vec isan arbitrary initializing vector.
Thelength of | Vec must be 64 bits (8 bytes). The length of Text must be a multiple of 64 bits (8 bytes).

blowfish cbc decrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

| Vec = Cipher = binary()

Decrypts Text using Blowfish in CBC mode. Key isthe Blowfish key, and | Vec is an arbitrary initializing vector.
Thelength of 1 Vec must be 64 bits (8 bytes). The length of Text must be a multiple 64 bits (8 bytes).

blowfish cfb64 encrypt(Key, IVec, Text) -> Cipher
Types.

Key = Text = iolist() | binary()

| Vec = Cipher = binary()

14 | Ericsson AB. All Rights Reserved.: crypto

crypto

Encrypts Text using Blowfishin CFB mode with 64 bit feedback. Key isthe Blowfish key, and | Vec isan arbitrary
initializing vector. The length of | Vec must be 64 hits (8 bytes).

blowfish cfb64 decrypt(Key, IVec, Text) -> Cipher
Types:
Key = Text = iolist() | binary()
| Vec = Ci pher = binary()
Decrypts Text using Blowfish in CFB mode with 64 bit feedback. Key isthe Blowfish key, and | Vec isan arbitrary
initializing vector. The length of | Vec must be 64 bits (8 bytes).

blowfish ofb64 encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

| Vec = G pher = binary()

Encrypts Text using Blowfishin OFB mode with 64 bit feedback. Key isthe Blowfish key, and | Vec isan arbitrary
initializing vector. The length of | Vec must be 64 bits (8 bytes).

aes cfb 128 encrypt(Key, IVec, Text) -> Cipher
Types:
Key = Text = iolist() | binary()
| Vec = Cipher = binary()
Encrypts Text according to AES in Cipher Feedback mode (CFB). Key isthe AES key, and | Vec is an arbitrary
initializing vector. The lengths of Key and | Vec must be 128 bits (16 bytes).

aes cfb 128 decrypt(Key, IVec, Cipher) -> Text
Types:
Key = Cipher = iolist() | binary()
I Vec = Text = binary()
DecryptsCi pher according to AESin Cipher Feedback Mode (CFB). Key isthe AESkey, and | Vec isan arbitrary

initializing vector. Key and | Vec must have the same values as those used when encrypting. The lengths of Key and
| Vec must be 128 bits (16 bytes).

aes cbc 128 encrypt(Key, IVec, Text) -> Cipher
Types:
Key = Text = iolist() | binary()
| Vec = Cipher = binary()
Encrypts Text according to AES in Cipher Block Chaining mode (CBC). Text must be a multiple of 128 bits (16

bytes). Key isthe AES key, and | Vec isan arhitrary initializing vector. The lengths of Key and | Vec must be 128
bits (16 bytes).

aes cbc 128 decrypt(Key, IVec, Cipher) -> Text
Types.

Key = Cipher = iolist() | binary()

I Vec = Text = binary()

Ericsson AB. All Rights Reserved.: crypto | 15

crypto

Decrypts Ci pher according to AES in Cipher Block Chaining mode (CBC). Key isthe AES key, and | Vec isan
arbitrary initializing vector. Key and | Vec must have the same values as those used when encrypting. G pher must
be amultiple of 128 hits (16 bytes). The lengths of Key and | Vec must be 128 hits (16 bytes).

aes cbc ivec(Data) -> IVec
Types:
Dat a iolist() | binary()
I Vec = binary()

Returns the | Vec to be used in a next iteration of aes_cbc_* [encrypt| decrypt]. Dat a is the encrypted
data from the previous iteration step.

aes ctr _encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

| Vec = Cipher = binary()

Encrypts Text according to AES in Counter mode (CTR). Text can be any number of bytes. Key isthe AES key
and must be either 128, 192 or 256 hitslong. | Vec isan arbitrary initializing vector of 128 hits (16 bytes).

aes ctr decrypt(Key, IVec, Cipher) -> Text
Types.

Key = Cipher = iolist() | binary()

I Vec = Text = binary()

Decrypts Ci pher according to AESin Counter mode (CTR). Ci pher can be any number of bytes. Key isthe AES
key and must be either 128, 192 or 256 hitslong. | Vec isan arbitrary initializing vector of 128 bits (16 bytes).

aes ctr stream init(Key, IVec) -> State

Types:
State = { K I, E, C}
Key = K = iolist()
IVec =1 = E = binary()

C = integer()

Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must
be either 128, 192, or 256 btslong. | Vec isan arbitrary initializing vector of 128 bits (16 bytes). This stateisfor use
with aes ctr_stream_encrypt and aes_ctr_stream_decrypt.

aes ctr stream encrypt(State, Text) -> { NewState, Cipher}
Types:
Text = iolist() | binary()
Ci pher = binary()
Encrypts Text according to AES in Counter mode (CTR). Thisfunction can be used to encrypt a stream of text using
a series of callsinstead of requiring all text to be in memory. Text can be any number of bytes. State is initialized

using aes ctr_stream init. NewSt at e isthe new streaming encryption state that must be passed to the next call to
aes_ctr_stream encrypt.C pher isthe encrypted cipher text.

16 | Ericsson AB. All Rights Reserved.: crypto

crypto

aes ctr stream decrypt(State, Cipher) -> { NewState, Text }
Types:
Cipher = iolist() | binary()
Text = binary()
Decrypts Ci pher according to AES in Counter mode (CTR). This function can be used to decrypt a stream of
ciphertext using a series of calls instead of requiring all ciphertext to be in memory. Ci pher can be any number of

bytes. State is initialized using aes ctr_stream init. NewSt at e is the new streaming encryption state that must be
passed to the next call toaes_ctr_stream encrypt. Text isthedecrypted data.

erlint(Mpint) -> N
mpint(N) -> Mpint
Types:
Mpi nt = bi nary()
N = integer()
Convert abinary multi-precisioninteger Mpi nt to and from an erlang big integer. A multi-precision integer isabinary
withthefollowingform: <<Byt eLen: 32/ i nt eger, Byt es: Byt eLen/ bi nar y>>wherebothByt eLen and

Byt es are big-endian. Mpints are used in some of the functionsin cr ypt o and are not trandated in the API for
performance reasons.

rand bytes(N) -> binary()
Types:
N = i nteger()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the cr ypt o library pseudo-
random number generator.

strong rand bytes(N) -> binary()
Types:
N = i nteger()
Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng

seeded and periodically mixed with operating system provided entropy. By default thisisthe RAND byt es method
from OpenSSL.

May throw exception | ow_ent r opy in case the random generator failed due to lack of secure "randomness’.

rand uniform(Lo, Hi) -> N
Types:
Lo, H, N = Mint | integer()
Mpi nt = bi nary()
Generatearandomnumber N, Lo =< N < Hi . Usesthecr ypt o library pseudo-random number generator. The
arguments (and result) can be either erlang integers or binary multi-precision integers. Hi must be larger than Lo.

strong _rand mpint(N, Top, Bottom) -> Mpint
Types:

N = non_neg_i nteger ()

Top=-11] 0| 1

Ericsson AB. All Rights Reserved.: crypto | 17

crypto

Bottom=0 | 1
Mpi nt = binary()

Generate an N bit random number using OpenSSL's cryptographically strong pseudo random number generator
BN _r and.

The parameter Top places constraints on the most significant bits of the generated number. If Top is 1, then the two
most significant bitswill be set to 1, if Top is0, the most significant bit will be 1, and if Top is-1 then no constraints
are applied and thus the generated number may be less than N bits long.

If Bot t omis 1, then the generated number is constrained to be odd.
May throw exception | ow_ent r opy in case the random generator failed due to lack of secure "randomness”.

mod exp(N, P, M) -> Result
Types:
N, P, M Result = Mint
Mpi nt = bi nary()
This function performs the exponentiationN ~ P nmod M using thecr ypt o library.

rsa sign(DataOrDigest, Key) -> Signature
rsa sign(DigestType, DataOrDigest, Key) -> Signature

Types:
Dat aOr Di gest = Data | {digest, Digest}
Data = Mpint

Di gest = binary()

Key = [E, N, Dl | [E. N, D, P1, P2, El, E2, Q

E, N D= Mint

Where E is the public exponent, N is public modulus and D is the private exponent.

P1, P2, E1l, E2, C = Mint

The longer key format contains redundant information that will make the calculation faster. P1, P2 arefirst and

second prime factors. E1, E2 arefirst and second exponents. Cisthe CRT coefficient. Terminology is taken
from RFC 3447.

Di gest Type = nd5 | sha | sha224 | sha256 | sha384 | sha512
The default Di gest Type issha

Mpi nt = bi nary()

Si gnature = binary()

Createsa RSA signature with the private key Key of adigest. The digest iseither calculated asaDi gest Type digest
of Dat a or aprecalculated binary Di gest .

rsa verify(DataOrDigest, Signature, Key) -> Verified
rsa verify(DigestType, DataOrDigest, Signature, Key) -> Verified
Types.

Verified = bool ean()

Dat aOrDi gest = Data | {digest|D gest}

Data, Signature = Mint

Di gest = binary()

18 | Ericsson AB. All Rights Reserved.: crypto

crypto

Key = [E, N

E, N = Mint

Where E is the public exponent and N is public modulus.

Di gest Type = nd5 | sha | sha224 | sha256 | sha384 | sha512

The default Di gest Type issha

Mpi nt = bi nary()
Verifies that a digest matches the RSA signature using the signer's public key Key. The digest is either calculated as
aDi gest Type digest of Dat a or aprecalculated binary Di gest .

May throw exception not sup in case the chosen Di gest Type is not supported by the underlying OpenSSL
implementation.

rsa _public encrypt(PlainText, PublicKey, Padding) -> ChipherText
Types:

Pl ai nText = binary()

PublicKey = [E, N

E, N = Mint

Where E is the public exponent and N is public modulus.

Paddi ng = rsa_pkcsl_padding | rsa_pkcsl_oaep_paddi ng | rsa_no_paddi ng

Chi pher Text = binary()
Encrypts the Pl ai nText (usually a session key) using the Publ i cKey and returns the cipher. The Paddi ng
decides what padding mode is used, r sa_pkcs1_paddi ng is PKCS #1 v1.5 currently the most used mode and
rsa_pkcsl oaep_paddi ng is EME-OAEP as defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty
encoding parameter. This mode is recommended for al new applications. The size of the Msg must be less than
byte size(N)-11lifrsa_pkcsl paddi ngisused,byte size(N)-41lifrsa_pkcsl_oaep_paddi ng
isused and byt e_si ze(N) if rsa_no_paddi ng isused. Where byte_size(N) isthe size part of an Mpi nt - 1.

rsa_private decrypt(ChipherText, PrivateKey, Padding) -> PlainText
Types.
Chi pher Text = binary()
PrivateKey = [E, N, D] | [EL N D P1, P2, E1l, E2,
E, N, D= Mint
Where E is the public exponent, Nis public modulus and D is the private exponent.
P1, P2, E1l, E2, C = Mint
The longer key format contains redundant information that will make the calculation faster. P1, P2 arefirst and

second prime factors. E1, E2 arefirst and second exponents. Cisthe CRT coefficient. Terminology is taken
from RFC 3447.

Paddi ng = rsa_pkcsl padding | rsa_pkcsl_oaep_paddi ng | rsa_no_paddi ng
Pl ai nText = binary()
Decrypts the Chi pher Text (usually a session key encrypted with rsa_public_encrypt/3) using the Pr i vat eKey

and returns the message. The Paddi ng is the padding mode that was used to encrypt the data, see
rsa_public_encrypt/3.

rsa_private encrypt(PlainText, PrivateKey, Padding) -> ChipherText

Types.
Pl ai nText = binary()

Ericsson AB. All Rights Reserved.: crypto | 19

crypto

PrivateKey = [E, N, D] | [EfE N D P1, P2, E1l, E2, C

E, N, D= Mint

Where E is the public exponent, Nis public modulus and D is the private exponent.

P1, P2, E1, E2, C = Mint

The longer key format contains redundant information that will make the calculation faster. P1, P2 arefirst and

second prime factors. E1, E2 arefirst and second exponents. Cisthe CRT coefficient. Terminology is taken
from RFC 3447.

Paddi ng = rsa_pkcsl padding | rsa_no_paddi ng

Chi pher Text = bi nary()
EncryptsthePl ai nText usingthePr i vat eKey and returnsthe cipher. ThePaddi ng decideswhat padding mode
isused, r sa_pkcs1l_paddi ng is PKCS #1 v1.5 currently the most used mode. The size of the Msg must be less
thanbyt e_si ze(N) - 11ifrsa_pkcs1l_paddi ngisused,andbyt e_si ze(N) ifrsa_no_paddi ngisused.
Where byte size(N) isthe size part of an Mpi nt - 1.

rsa public decrypt(ChipherText, PublicKey, Padding) -> PlainText

Types:
Chi pher Text = bi nary()
PublicKey = [E, N
E, N = Mint

Where E is the public exponent and N is public modulus
Paddi ng = rsa_pkcsl_padding | rsa_no_paddi ng
Pl ai nText = binary()

Decrypts the Chi pher Text (encrypted with rsa_private encrypt/3) using the Pri vat eKey and returns the
message. The Paddi ng isthe padding mode that was used to encrypt the data, seersa_private _encrypt/3.

dss sign(DataOrDigest, Key) -> Signature
dss sign(DigestType, DataOrDigest, Key) -> Signature
Types.
Di gest Type = sha
Dat aOr Di gest = Mpint | {digest, Di gest}
Key = [P, Q G X
P, Q G X = Mint
Where P, Qand Gare the dss parameters and X is the private key.
Digest = binary() with length 20 bytes
Si gnature = binary()

Createsa DSS signature with the private key Key of adigest. Thedigest iseither calculated asaSHA1 digest of Dat a
or aprecalculated binary Di gest .

A deprecated featureis having Di gest Type = ' none' inwhich case Dat aOr Di gest isaprecaculated SHA1
digest.

dss verify(DataOrDigest, Signature, Key) -> Verified
dss verify(DigestType, DataOrDigest, Signature, Key) -> Verified
Types.

Verified = bool ean()

20 | Ericsson AB. All Rights Reserved.: crypto

crypto

Di gest Type = sha

Dat aOr Di gest = Mpint | {digest, D gest}

Data = Mpint | ShabDi gest

Si gnature = Mint

Key = [P, Q G Y]

P, Q G Y = Mint

Where P, Qand Gare the dss parameters and Y is the public key.
Digest = binary() with length 20 bytes

Verifies that a digest matches the DSS signature using the public key Key. The digest is either calculated asa SHA1
digest of Dat a or isaprecalculated binary Di gest .

A deprecated featureishaving Di gest Type = ' none' inwhich case Dat aOr Di gest isaprecalculated SHAL
digest binary.

rc2_cbc encrypt(Key, IVec, Text) -> Cipher
Types:

Key = Text = iolist() | binary()

Ivec = G pher = binary()
Encrypts Text according to RC2 in CBC mode.

rc2 cbc decrypt(Key, IVec, Cipher) -> Text
Types:

Key = Text = iolist() | binary()

Ivec = Cipher = binary()
Decrypts Ci pher according to RC2 in CBC mode.

rc4 encrypt(Key, Data) -> Result
Types:
Key, Data = iolist() | binary()
Result = binary()

Encrypts the data with RC4 symmetric stream encryption. Since it is symmetric, the same function is used for
decryption.

dh generate key(DHParams) -> {PublicKey,PrivateKey}
dh generate key(PrivateKey, DHParams) -> {PublicKey,PrivateKey}
Types:

DHParanmeters = [P, {F

P, G = Mint

Where P is the shared prime number and Gis the shared generator.

Publ i cKey, PrivateKey = Mint()

Generates a Diffie-Hellman Publ i cKey and Pri vat eKey (if not given).

dh compute key(OthersPublicKey, MyPrivateKey, DHParams) -> SharedSecret
Types.

Ericsson AB. All Rights Reserved.: crypto | 21

crypto

DHPar anmeters = [P, (G

P, G = Mint

Where P is the shared prime number and Gis the shared generator.
O hersPubl i cKey, MPrivateKey = Mint()

Shar edSecret = binary()

Computes the shared secret from the private key and the other party's public key.

exor(Datal, Data2) -> Result

Types:
Datal, Data2 = iolist() | binary()
Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

DES in CBC mode

The Data Encryption Standard (DES) defines an algorithm for encrypting and decrypting an 8 byte quantity using an
8 byte key (actually only 56 bits of the key is used).

When it comes to encrypting and decrypting blocks that are multiples of 8 bytes various modes are defined (NIST SP
800-38A). One of those modes is the Cipher Block Chaining (CBC) mode, where the encryption of an 8 byte segment
depend not only of the contents of the segment itself, but also on the result of encrypting the previous segment: the
encryption of the previous segment becomes the initializing vector of the encryption of the current segment.

Thus the encryption of every segment depends on the encryption key (which is secret) and the encryption of the
previous segment, except the first segment which has to be provided with an initial initializing vector. That vector
could be chosen at random, or be a counter of some kind. It does not have to be secret.

Thefollowing exampleis drawn from the old FIPS 81 standard (replaced by NIST SP 800-38A), where both the plain
text and the resulting cipher text is settled. The following code fragment returns “true'.

Key = <<16#01,16#23,16#45,16#67,16#89,16#ab, 16#cd, 16#ef>>,
IVec = <<16#12,16#34,16#56,16#78,16#90, 16#ab, 16#cd, 16#ef>>,
P = "Now is the time for all ",
C = crypto:des cbc_encrypt(Key, IVec, P),
% Which is the same as
P1 = "Now is t", P2 = "he time ", P3 = "for all ",
Cl = crypto:des cbc_encrypt(Key, IVec, P1),
C2 = crypto:des cbc_encrypt(Key, Cl, P2),
C3 = crypto:des cbc_encrypt(Key, C2, P3),
C = <<Cl/binary, C2/binary, C3/binary>>,
C = <<16#e5,16#c7,16#cd, 16#de, 16#87,16#2b, 16#f2,16#7c,

16#43,16#e9,16#34,16#00, 16#8c, 16#38, 16#9c, 16#0f,
16#68,16#37,16#88, 16#49, 16#9a, 16#7c, 16#05, 16#f6>>,
<<"Now is the time for all ">> ==
crypto:des cbc decrypt(Key, IVec, C).

The following is true for the DES CBC mode. For all decompositionsP1 ++ P2 = P of aplain text message P
(where thelength of all quantities are multiples of 8 bytes), the encryption Cof Pisequal toCl ++ C2,whereCl is
obtained by encrypting P1 with Key and theinitializing vector | Vec, and where C2 isobtained by encrypting P2 with
Key andtheinitializing vector | ast 8(C1) ,wherel ast (Bi nary) denotesthelast 8 bytes of thebinary Bi nary.

22 | Ericsson AB. All Rights Reserved.: crypto

crypto

Similarly, for all decompositionsC1 ++ C2 = C of acipher text message C (where the length of all quantities
are multiples of 8 bytes), the decryption P of Cisequal to P1 ++ P2, where P1 isobtained by decrypting C1 with
Key and theinitializing vector | Vec, and where P2 is obtained by decrypting C2 with Key and theinitializing vector
| ast 8(Cl) ,wherel ast 8(Bi nary) isasabove.

For DES3 (which uses three 64 bit keys) the situation is the same.

Ericsson AB. All Rights Reserved.: crypto | 23

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	Reference Manual
	crypto
	crypto
	start/0
	stop/0
	info/0
	info_lib/0
	md4/1
	md4_init/0
	md4_update/2
	md4_final/1
	md5/1
	md5_init/0
	md5_update/2
	md5_final/1
	sha/1
	sha_init/0
	sha_update/2
	sha_final/1
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	md5_mac/2
	md5_mac_96/2
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	sha_mac/2
	sha_mac/3
	sha_mac_96/2
	des_cbc_encrypt/3
	des_cbc_decrypt/3
	des_cbc_ivec/1
	des_cfb_encrypt/3
	des_cfb_decrypt/3
	des_cfb_ivec/2
	des3_cbc_encrypt/5
	des3_cbc_decrypt/5
	des3_cfb_encrypt/5
	des3_cfb_decrypt/5
	des_ecb_encrypt/2
	des_ecb_decrypt/2
	blowfish_ecb_encrypt/2
	blowfish_ecb_decrypt/2
	blowfish_cbc_encrypt/3
	blowfish_cbc_decrypt/3
	blowfish_cfb64_encrypt/3
	blowfish_cfb64_decrypt/3
	blowfish_ofb64_encrypt/3
	aes_cfb_128_encrypt/3
	aes_cfb_128_decrypt/3
	aes_cbc_128_encrypt/3
	aes_cbc_128_decrypt/3
	aes_cbc_ivec/1
	aes_ctr_encrypt/3
	aes_ctr_decrypt/3
	aes_ctr_stream_init/2
	aes_ctr_stream_encrypt/2
	aes_ctr_stream_decrypt/2
	erlint/1
	mpint/1
	rand_bytes/1
	strong_rand_bytes/1
	rand_uniform/2
	strong_rand_mpint/3
	mod_exp/3
	rsa_sign/2
	rsa_sign/3
	rsa_verify/3
	rsa_verify/4
	rsa_public_encrypt/3
	rsa_private_decrypt/3
	rsa_private_encrypt/3
	rsa_public_decrypt/3
	dss_sign/2
	dss_sign/3
	dss_verify/3
	dss_verify/4
	rc2_cbc_encrypt/3
	rc2_cbc_decrypt/3
	rc4_encrypt/2
	dh_generate_key/1
	dh_generate_key/2
	dh_compute_key/3
	exor/2

